翻訳と辞書 |
Grothendieck space : ウィキペディア英語版 | Grothendieck space In mathematics, a Grothendieck space, named after Alexander Grothendieck, is a Banach space ''X'' such that for all separable Banach spaces ''Y'', every bounded linear operator from ''X'' to ''Y'' is weakly compact, that is, the image of a bounded subset of ''X'' is a weakly compact subset of ''Y''. Every reflexive Banach space is a Grothendieck space. Conversely, a separable Grothendieck space ''X'' must be reflexive, since the identity from ''X'' to ''X'' is weakly compact in this case. Grothendieck spaces which are not reflexive include the space ''C''(''K'') of all continuous functions on a Stonean compact space ''K'', and the space ''L''∞(''μ'') for a positive measure ''μ'' (a Stonean compact space is a Hausdorff compact space in which the closure of every open set is open). ==See also==
* Dunford–Pettis property
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Grothendieck space」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|